A Double Smoothing Technique for Constrained Convex Optimization Problems and Applications to Optimal Control
نویسندگان
چکیده
In this paper, we propose an efficient approach for solving a class of convex optimization problems in Hilbert spaces. Our feasible region is a (possibly infinite-dimensional) simple convex set, i.e. we assume that projections on this set are computationally easy to compute. The problem we consider is the minimization of a convex function over this region under the additional constraint Au ∈ T , where A is a linear operator and T is a (finite-dimensional) convex set whose dimension is small as compared to the dimension of the feasible region. In our approach, we dualize the linear constraints, solve the resulting dual problem with a purely dual gradient method and show how to reconstruct an approximate primal solution. In order to accelerate our scheme, we introduce a novel double smoothing technique that involves regularization of the dual problem to allow the use of a fast gradient method. As a result, we obtain a method with complexity O( 1 ln 1 ) gradient iterations, where is the desired accuracy for the primal-dual solution. Our approach covers, in particular, optimal control problems with trajectory governed by a system of linear differential equations, where the additional constraints can for example force the trajectory to visit some convex sets at certain moments of time.
منابع مشابه
Double smoothing technique for infinite-dimensional optimization problems with applications to optimal control
In this paper, we propose an efficient technique for solving some infinite-dimensional problems over the sets of functions of time. In our problem, besides the convex point-wise constraints on state variables, we have convex coupling constraints with finite-dimensional image. Hence, we can formulate a finite-dimensional dual problem, which can be solved by efficient gradient methods. We show th...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملDouble Smoothing Technique for Large-Scale Linearly Constrained Convex Optimization
In this paper, we propose an efficient approach for solving a class of large-scale convex optimization problems. The problem we consider is the minimization of a convex function over a simple (possibly infinite-dimensional) convex set, under the additional constraint Au ∈ T , where A is a linear operator and T is a convex set whose dimension is small compared to the dimension of the feasible re...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملEstimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach
This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011